viernes, 9 de octubre de 2009

principio de funcionamiento del transformador

El principio de funcionamiento del transformador, se puede explicar por medio del llamado transformador ideal monofásico, es decir, una máquina que se alimenta por medio de una corriente alterna monofásica.

A reserva de estudios con mayor detalle, la construcción del transformador, sustancialmente se puede decir que un transformador está constituido por un núcleo de material magnético que forma un circuito magnético cerrado, y sobre de cuyas columnas o piernas se localizándoos devanados, uno denominado “primario” que recibe la energía y el otro el secundario, que se cierra sobre un circuito de utilización al cual entrega la energía. Los dos devanados se encuentran eléctricamente asilado entre sí.

El voltaje en un generador eléctrico se induce, ya sea cuando una bobina se mueve a través de un campo magnético o bien cuando el campo producido en los polos en movimiento cortan una bobina estacionaria. En ambos casos, el flujo total es sustancialmente contante, pero hay un cambio en la cantidad de flujo que eslabona a la bobina. Este mismo principio es válido para el transformador, solo que en este caso las bobinas y el circuito magnético son estacionarios (no tienen movimiento), en tanto que el flujo magnético cambio continuamente.

El cambio en el flujo se puede obtener aplicando una corriente alterna en al bobina. La corriente, a través de la bobina, varía en magnitud con el tiempo, y por lo tanto, el flujo producido por esta corriente, varia también en magnitud con el tiempo.

El flujo cambiante con el tiempo que se aplica en uno de los devanados, induce un voltaje E1 (en el primario). Si se desprecia por facilidad, la caída de voltaje por resistencia de el devanado primario, el valor de E1 será igual y de sentido opuesto al voltaje aplicado V1. De la ley de inducción electromagnética, se sabe que este voltaje inducido E1 en el devanado primario y también al índice de cambio del flujo en la bobina. Se tienen dos relaciones importantes.

V1 = - E1

E1 a N1 (0/T)

La mismo tiempo que el flujo cambia en al bobina primaria, también cambia en la bobina secundaria, dado que ambas bobinas se encuentran dentro del mismo medio magnético, y entonces el índice de cambio del flujo magnético en ambas bobinas es exactamente el mismo. Este cambio en el flujo inducirá un flujo E2 en la bobina secundaria que será proporcional al número de espiras en el devanado secundario N2. Si se considera que no se tiene carga conectada al circuito secundario, el voltaje inducido E2 es el voltaje que aparece en las terminales del secundario, por lo que se tienen dos relaciones adicionales.

E2 a N2 (0/T)

E2 = V2

En virtud de que armas bobinas se encuentran devanadas en el mismo circuito magnético, los factores de proporcionalidad para las ecuaciones de voltaje son iguales, de manera que si se dividen las ecuaciones para E1 y E2 se tiene:

E1 = N1

E2 N2

Además como numéricamente deben ser iguales E1 y V2 o V2 - A ecuación anterior se puede escribir como:

V1 = Ng

V2 N2

Relación de corriente.

Si se conecta una carga al secundario del transformador, el voltaje inducido Eg hace que circule una corriente I2 en el devanado secundario.

Debido a la circulación de corrientes, se tiene en el devanado secundario una fuerza magnetomotriz (FMM) N2 I2 opuesta a la del primario N1 I1. Es conveniente recordar que el voltaje inducido en el primario E1 es siempre directamente proporcional al flujo 0 y también es igual al voltaje aplicado V1, considerando como antes, todos estos valores como eficaces. Dado que el voltaje aplicado no cambia, el flujo en el núcleo debe ser constante, cualquier incremento en la corriente secundaria, será balanceado por un incremento en la corriente primaria, de manera que el flujo de energización producido por la corriente en el primario tendrá un valor efectivo constante durante la operación del transformador. En los transformadores de potencia de valor relativamente pequeño, se puede decir que prácticamente el flujo que eslabona al devanado primario, es el mismo que eslabona al secundario y de aquí que la corriente de vacío o de energización representa sólo el 2% o 3% de la corriente primaria de plena carga ya se puede decir que los ampere-espira del primario son iguales a los ampere-espira del secundario, es decir:

N1 I = N2 I2

I1

=

N2

I2

N1

3 comentarios:

  1. pues solo pasaba a su blog para checar la informacion de las subestaciones electricas y esta muy completo tambein las subestaciones compactas con imagenes y de mas esta mu completa sin mas por el momento se despide su compa el LOYA

    ResponderEliminar
  2. pues este blog esta bien pero le falta mes informacion sobre las mismas fotos

    ResponderEliminar
  3. soy cristian el del comentario de arriva esque se me olvido ponerle mi nombre jeje

    ResponderEliminar